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The problem of motion of a uniformly heated spheroidal hydrosol particle is solved. An expression which al-
lows estimation of the resistance force of the spheroidally shaped solid hydrosol particle at arbitrary differ-
ences between the temperatures of the particle surface and the region at a distance from it is obtained with
account for the dependence of the viscosity on the temperature.

We consider the motion of a uniformly heated spheroidal solid particle (an oblate spheroid) in a viscous fluid
in the gravitational field. By a heated particle is meant a particle whose mean surface temperature greatly exceeds in
magnitude the temperature of the surrounding medium. Heating of the particle surface can be caused, for example, by
the occurrence of a volume chemical reaction, absorption of electromagnetic radiation, etc.

Of all the parameters of liquid transfer, it is only the coefficient of dynamic viscosity that is strongly related
to the temperature [1]. To allow for the dependence of the viscosity on the temperature we use expression (1), which
makes it possible to describe a viscosity change over a wide range of temperatures with any required accuracy (at
Fn = 0 this formula can be reduced to the known Reynolds relation [1])

µliq = µ∞ 






1 +  ∑ 

n=1

∞

 Fn 




Tliq

T∞
 − 1





n





 exp 




− A 





Tliq

T∞
 − 1








 . (1)

Let us change to the reference system related to the particle. The problem in essence is reduced to analysis
of the plane-parallel flow of a liquid (at a velocity U∞(U∞ N Oz)) past a motionless spheroid. The flow past the sphe-
roid is described in the spheroidal coordinate system (ε, η, ϕ) with origin at the center of the hydrosol particle.

At low Reynolds numbers the distributions of the velocity Uliq, the pressure Pliq, and the temperature Tliq are
described by the following system of equations [2, 3]:

∇ Pliq = µliq ∆Uliq + 2 (∇ µliq∇ ) Uliq + [∇ µliq × rot Uliq] ,   div Uliq = 0 , (2)

div (λliq∇ Tliq) = 0 . (3)

In solving this system of equations, the boundary conditions

Uliq = 0 ,   Tliq = Ts   for   ε = ε0 , (4)

Uliq → U∞ cos η eε − U∞ sin η eη ,   Tliq → T∞ ,   Pliq → P∞   for   ε → ∞ . (5)

are taken into account.
The force affecting the particle from the side of the flow is determined from the formula
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Fz = ∫ 
S




− Pliq cos η + σεε cos η − 

sinh ε
cosh ε

 σεη sin η



 dS , (6)

where dS = c2 cosh2 ε sin ηdηdϕ is the differential surface element and σεε and σεη are the components of the stress
tensor in the spheroidal coordinate system [2].

In order to find the force affecting the heated spheroidally shaped solid particle we must know the tempera-
ture field in its vicinity. Integration of Eq. (3) with the corresponding boundary conditions yields

tliq = 1 + 
γa0

c
 arcctan λ , (7)

where tliq = Tliq
 ⁄ T∞, λ = sinh ε, and γ = 

1

√ 1 + λ2
 

ts − 1

arcctan  λ0
 is the dimensionless parameter characterizing the heating of

the particle surface, ts = Ts
 ⁄ T∞ and λ0 = b0

 ⁄ c.

With account for (7) expression (1) takes the form
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Since the viscosity depends only on the radial coordinate λ (formula (8)), we find the solution of the system
of equations (2) by the method of separation of variables, expanding the fields of velocity and pressure in Legendre
and Gegenbauer polynomials [2]. In particular, for the components of the mass velocity Uliq we obtained the following
expressions, which satisfy the boundary conditions (5):
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The integral part k ⁄ 2 is denoted by [k ⁄ 2].
The force affecting the spheroid due to viscous stresses is determined by integration of expression (6) over the

surface of the spheroid, and with account for (9) it is

Fz = 6πα0 µ∞KU∞ nz , (10)

where K = 
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 and G1

I  and G2
I  are the first derivatives of the correspond-

ing functions with respect to λ.
The effect of the temperature of the particle surface on the resistance force is determined by the coefficient

K. As an example, Table 1 presents the results of numerical calculations of the dependence of the coefficient K on the
mean temperature of the spheroid surface and the ratio of the semiaxes for solid particles suspended in water at
T∞ = 273 K, A = 5.779, and Fn = 0 for n ≥ 1. The numerical analysis showed that heating of the spheroid surface sub-
stantially affects the resistance force.

In the limit when γ → 0 (small temperature differences in the vicinity of the spheroid), G1 = 1 ⁄ (3λ3),
G1

I  = −1 ⁄ λ4, G2 = 1 ⁄ λ, G2
I  = −1 ⁄ λ2, and a0 = b0 = R; the coefficient is K = 1 and formula (10) becomes the Stokes for-

mula for a spherical solid particle with radius R [2].
In order to obtain the expression for the resistance coefficient of an extended spheroid, in (10) we must re-

place λ by iλ and c by − ic (i is the imaginary unit).

Table 1. Dependence of the Coefficient K on the Mean Temperature of the Surface Ts and the Ratio of the Semiaxes a0 ⁄ b0

a0
 ⁄ b0

Ts, K

273 283 303 333 343 353 363

0.73 0.947 0.705 0.393 0.163 0.121 0.089 0.065

0.9 0.980 0.727 0.397 0.158 0.116 0.086 0.062
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Let us consider the motion of a spheroidal particle in the gravitational field. Equating the gravity force, with
account for the buoyancy force, to the resistance force (10), we obtain the velocity of its gravitational fall:
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Thus, formulas (10) and (11) allow estimation of the hydrodynamic force affecting a uniformly heated
spheroidal particle and the velocity of its gravitational force with account for the dependence of the viscosity on the
temperature, which is represented in the form of an exponential-power series at arbitrary temperature differences in its
vicinity.

NOTATION

µ∞ = µliq(T∞); A, Fn – const; U∞ =  U∞ ; Ts, mean temperature of the spheroid surface; eε and eη, unit vec-
tors of the spheroidal coordinate system; a0 and b0, semiaxes of the spheroid; λliq, thermal conductivity of the liquid;
P∞ and T∞, undisturbed pressure and temperature in the liquid; nz, unit vector in the direction of the z axis; ρ, density.
Subscripts: p, particle; ∞, values of physical quantities taken at a distance from the particle (at infinity); s, spheroid.
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